Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Lancet Microbe ; 4(7): e552-e562, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2307685

ABSTRACT

During an epidemic, individual test results form the basis of epidemiological indicators such as case numbers or incidence. Therefore, the accuracy of measures derived from these indicators depends on the reliability of individual results. In the COVID-19 pandemic, monitoring and evaluating the performance of the unprecedented number of testing facilities in operation, and novel testing systems in use, was urgently needed. External quality assessment (EQA) schemes are unique sources of data reporting on testing performance, and their providers are recognised contacts and support for test facilities (for technical-analytical topics) and health authorities (for planning the monitoring of infection diagnostics). To identify information provided by SARS-CoV-2 genome detection EQA schemes that is relevant for public health microbiology, we reviewed the current literature published in PubMed between January, 2020, and July, 2022. We derived recommendations for EQA providers and their schemes for best practices to monitor pathogen-detection performance in future epidemics. We also showed laboratories, test facilities, and health authorities the information and benefits they can derive from EQA data, and from the non-EQA services of their providers.


Subject(s)
COVID-19 , Pandemics , Humans , Reproducibility of Results , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/epidemiology , Laboratories
2.
J Clin Virol ; 162: 105428, 2023 05.
Article in English | MEDLINE | ID: covidwho-2261189

ABSTRACT

BACKGROUND: Immunosuppressed individuals such as kidney transplant recipients (KTR) and hemodialysis patients (DP) show impaired immune responses to COVID-19 vaccination. Plasma Torque Teno Virus (TTV) DNA load is used as surrogate for the individual degree of immunosuppression. We now assessed the association of TTV load at time of COVID-19 vaccination with humoral and cellular immune response rates to vaccination in KTR, DP, and healthy medical personnel (MP). METHODS: A total of 100 KTR, 115 DP and 54 MP were included. All were SARS-CoV-2 seronegative at the time of vaccination with either BNT162b2 or mRNA-1273. Plasma TTV loads were assessed at the time of first vaccination. After two-dose vaccination, seroconversion (de novo detection of SARS-CoV-2 S1-IgA and/or IgG) was determined. In addition, cellular responses as assessed by interferon γ release and neutralizing antibodies were assessed in a subset of participants. ROC analyses were performed to define TTV load cut-offs predicting specific immune responses to vaccination. RESULTS: Plasma TTV loads at the time of first vaccination were negatively associated with seroconversion after two-dose vaccination in KTR (OR 0.87, 95% CI 0.76-0.99). TTV loads were significantly lower in KTR who developed humoral and cellular immune responses to vaccination compared to non-responders (p = 0.0411 and 0.0030, respectively). Of patients with TTV loads above 106 copies/ml, none developed cellular immune responses against SARS-CoV-2, and only 2 of 17 (12%) seroconverted in response to vaccination. CONCLUSION: Plasma TTV loads at the time of first vaccination in immunosuppressed individuals may be useful to predict individual vaccine-specific immune responses.


Subject(s)
COVID-19 , Kidney Transplantation , Humans , BNT162 Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Vaccination , RNA, Messenger , Transplant Recipients , Antibodies, Viral
4.
Clin Chem Lab Med ; 61(7): 1349-1358, 2023 06 27.
Article in English | MEDLINE | ID: covidwho-2228408

ABSTRACT

OBJECTIVES: The WHO's standardized measuring unit, "binding antibody units per milliliter (BAU/mL)," should allow the harmonization of quantitative results by different commercial Anti-SARS-CoV-2 immunoassays. However, multiple studies demonstrate inter-assay discrepancies. The antigenic changes of the Omicron variant affect the performance of Spike-specific immunoassays. This study evaluated the variation of quantitative Anti-SARS-CoV-2-Spike antibody measurements among 46, 50, and 44 laboratories in three rounds of a national external quality assessment (EQA) prior to and after the emergence of the Omicron variant in a diagnostic near-to-real-life setting. METHODS: We analyzed results reported by the EQA participant laboratories from single and sequential samples from SARS-CoV-2 convalescent, acutely infected, and vaccinated individuals, including samples obtained after primary and breakthrough infections with the Omicron variant. RESULTS: The three immunoassays most commonly used by the participants displayed a low intra-assay and inter-laboratory variation with excellent reproducibility using identical samples sent to the participants in duplicates. In contrast, the inter-assay variation was very high with all samples. Notably, the ratios of BAU/mL levels quantified by different immunoassays were not equal among all samples but differed between vaccination, past, and acute infection, including primary infection with the Omicron variant. The antibody kinetics measured in vaccinated individuals strongly depended on the applied immunoassay. CONCLUSIONS: Measured BAU/mL levels are only inter-changeable among different laboratories when the same assay was used for their assessment. Highly variable ratios of BAU/mL quantifications among different immunoassays and infection stages argue against the usage of universal inter-assay conversion factors.


Subject(s)
COVID-19 , Humans , Reproducibility of Results , COVID-19/diagnosis , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing
5.
Microbiol Spectr ; 11(1): e0231422, 2023 02 14.
Article in English | MEDLINE | ID: covidwho-2193550

ABSTRACT

Neutralizing antibodies (nAbs) are considered a valuable marker for measuring humoral immunity against SARS-CoV-2. However, live-virus neutralization tests (NTs) require high-biosafety-level laboratories and are time-consuming. Therefore, surrogate virus neutralization tests (sVNTs) have been widely applied, but unlike most anti-spike (S) antibody assays, NTs and sVNTs are not harmonized, requiring further evaluation and comparative analyses. This study compared seven commercial sVNTs and anti-S-antibody assays with a live-virus NT as a reference, using a panel of 720 single and longitudinal serum samples from 666 convalescent patients after SARS-CoV-2 infection. The sensitivity of these assays for detecting antibodies ranged from 48 to 94% after PCR-confirmed infection and from 56% to 100% relative to positivity in the in-house live-virus NT. Furthermore, we performed receiver operating characteristic (ROC) curve analyses to determine which immunoassays were most suitable for assessing nAb titers exceeding a specific cutoff (NT titer, ≥80) and found that the NeutraLISA and the cPass assays reached the highest area under the curve (AUC), exceeding 0.91. In addition, when the assays were compared for their correlation with nAb kinetics over time in a set of longitudinal samples, the extent of the measured decrease of nAbs after infection varied widely among the evaluated immunoassays. Finally, in vaccinated convalescent patients, high titers of nAbs exceeded the upper limit of the evaluated assays' quantification ranges. Based on data from this study, we conclude that commercial immunoassays are acceptable substitutes for live-virus NTs, particularly when additional adapted cutoffs are employed to detect nAbs beyond a specific threshold titer. IMPORTANCE While the measurement of neutralizing antibodies is considered a valuable tool in assessing protection against SARS-CoV-2, neutralization tests employ live-virus isolates and cell culture, requiring advanced laboratory biosafety levels. Including a large sample panel (over 700 samples), this study provides adapted cutoff values calculated for seven commercial immunoassays (including four surrogate neutralization assays and a protein-based microarray) that robustly correlate with specific titers of neutralizing antibodies.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Antibodies, Neutralizing , Neutralization Tests , Immunoglobulin G , Antibodies, Viral
6.
J Med Virol ; 95(1): e28404, 2023 01.
Article in English | MEDLINE | ID: covidwho-2157853

ABSTRACT

The severity of COVID-19 is associated with individual genetic host factors. Among these, genetic polymorphisms affecting natural killer (NK) cell responses, as variations in the HLA-E- (HLA-E*0101/0103), FcγRIIIa- (FcγRIIIa-158-F/V), and NKG2C- (KLRC2wt/del ) receptor, were associated with severe COVID-19. Recently, the rs9916629-C/T genetic polymorphism was identified that indirectly shape the human NK cell repertoire towards highly pro-inflammatory CD56bright NK cells. We investigated whether the rs9916629-C/T variants alone and in comparison to the other risk factors are associated with a fatal course of COVID-19. We included 1042 hospitalized surviving and 159 nonsurviving COVID-19 patients as well as 1000 healthy controls. rs9916629-C/T variants were genotyped by TaqMan assays and were compared between the groups. The patients' age, comorbidities, HLA-E*0101/0103, FcγRIIIa-158-F/V, and KLRC2wt/del variants were also determined. The presence of the rs9916629-C allele was a risk factor for severe and fatal COVID-19 (p < 0.0001), independent of the patients' age or comorbidities. Fatal COVID-19 was more frequent in younger patients (<69.85 years) carrying the FcγRIIIa-158-V/V (p < 0.006) and in older patients expressing the KLRC2del variant (p < 0.003). Thus, patients with the rs9916629-C allele have a significantly increased risk for fatal COVID-19 and identification of the genetic variants may be used as prognostic marker for hospitalized COVID-19 patients.


Subject(s)
COVID-19 , Killer Cells, Natural , Polymorphism, Genetic , Aged , Humans , Alleles , COVID-19/genetics , NK Cell Lectin-Like Receptor Subfamily C/genetics , Risk Factors
7.
J Clin Virol ; 158: 105352, 2023 01.
Article in English | MEDLINE | ID: covidwho-2150031

ABSTRACT

BACKGROUND: The detection of SARS-CoV-2 vRNA in clinical samples has relied almost exclusively on RT-qPCR as the gold standard test. Published results from various external quality assessments ("ring trials") worldwide have shown that there is still a large variability in results reported for the same samples. As reference standards of SARS-CoV-2 RNA are available, we tested whether using standard curves to convert Ct values into copies/mL (cp/mL) improved harmonization. METHODS: Nine laboratories using 23 test systems (15 of which were unique) prepared standard dilution curves to convert Ct values of 13 SARS-CoV-2 positive samples to cp/mL (hereafter IU/mL). The samples were provided in three rounds of a virus genome detection external quality assessment (EQA) scheme. We tested the precision and accuracy of results reported in IU/mL, and attempted to identify the sources of variability. RESULTS: Reporting results as IU/mL improved the precision of the estimated concentrations of all samples compared to reporting Ct values, although some inaccuracy remained. Variance analysis showed that nearly all variability in data was explained by individual test systems within individual laboratories. When controlling for this effect, there was no significant difference between all other factors tested (test systems, EQA rounds, sample material). CONCLUSIONS: Converting results to copies/mL improved precision across laboratory test systems. However, it seems the results are still very specific to test systems within laboratories. Further efforts could be made to improve accuracy and achieve full harmonization across diagnostic laboratories.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , RNA, Viral/genetics , RNA, Viral/analysis , COVID-19 Testing , Laboratories , Sensitivity and Specificity
8.
Sci Rep ; 12(1): 20117, 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2133630

ABSTRACT

SARS-CoV-2 gains cell entry via angiotensin-converting enzyme (ACE) 2, a membrane-bound enzyme of the "alternative" (alt) renin-angiotensin system (RAS). ACE2 counteracts angiotensin II by converting it to potentially protective angiotensin 1-7. Using mass spectrometry, we assessed key metabolites of the classical RAS (angiotensins I-II) and alt-RAS (angiotensins 1-7 and 1-5) pathways as well as ACE and ACE2 concentrations in 159 patients hospitalized with COVID-19, stratified by disease severity (severe, n = 76; non-severe: n = 83). Plasma renin activity (PRA-S) was calculated as the sum of RAS metabolites. We estimated ACE activity using the angiotensin II:I ratio (ACE-S) and estimated systemic alt-RAS activation using the ratio of alt-RAS axis metabolites to PRA-S (ALT-S). We applied mixed linear models to assess how PRA-S and ACE/ACE2 concentrations affected ALT-S, ACE-S, and angiotensins II and 1-7. Median angiotensin I and II levels were higher with severe versus non-severe COVID-19 (angiotensin I: 86 versus 30 pmol/L, p < 0.01; angiotensin II: 114 versus 58 pmol/L, p < 0.05), demonstrating activation of classical RAS. The difference disappeared with analysis limited to patients not taking a RAS inhibitor (angiotensin I: 40 versus 31 pmol/L, p = 0.251; angiotensin II: 76 versus 99 pmol/L, p = 0.833). ALT-S in severe COVID-19 increased with time (days 1-6: 0.12; days 11-16: 0.22) and correlated with ACE2 concentration (r = 0.831). ACE-S was lower in severe versus non-severe COVID-19 (1.6 versus 2.6; p < 0.001), but ACE concentrations were similar between groups and correlated weakly with ACE-S (r = 0.232). ACE2 and ACE-S trajectories in severe COVID-19, however, did not differ between survivors and non-survivors. Overall RAS alteration in severe COVID-19 resembled severity of disease-matched patients with influenza. In mixed linear models, renin activity most strongly predicted angiotensin II and 1-7 levels. ACE2 also predicted angiotensin 1-7 levels and ALT-S. No single factor or the combined model, however, could fully explain ACE-S. ACE2 and ACE-S trajectories in severe COVID-19 did not differ between survivors and non-survivors. In conclusion, angiotensin II was elevated in severe COVID-19 but was markedly influenced by RAS inhibitors and driven by overall RAS activation. ACE-S was significantly lower with severe COVID-19 and did not correlate with ACE concentrations. A shift to the alt-RAS axis because of increased ACE2 could partially explain the relative reduction in angiotensin II levels.


Subject(s)
COVID-19 , Peptide Hormones , Humans , Angiotensin-Converting Enzyme 2 , Renin-Angiotensin System , Angiotensin I , Angiotensin II , SARS-CoV-2 , Renin , Antihypertensive Agents
9.
Front Immunol ; 13: 946318, 2022.
Article in English | MEDLINE | ID: covidwho-2141971

ABSTRACT

Background and Methods: The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Omicron (B.1.1.529) variant is the antigenically most distinct variant to date. As the heavily mutated spike protein enables neutralization escape, we studied serum-neutralizing activities of naïve and vaccinated individuals after Omicron BA.1 or BA.2 sub-lineage infections in live virus neutralization tests with Omicron BA.1, Omicron BA.2, wildtype (WT, B1.1), and Delta (B.1.617.2) strains. Serum samples obtained after WT infections and three-dose mRNA vaccinations with and without prior infection were included as controls. Results: Primary BA.1 infections yielded reduced neutralizing antibody levels against WT, Delta, and Omicron BA.2, while samples from BA.2-infected individuals showed almost no cross-neutralization against the other variants. Serum neutralization of Omicron BA.1 and BA.2 variants was detectable after three-dose mRNA vaccinations, but with reduced titers. Vaccination-breakthrough infections with either Omicron BA.1 or BA.2, however, generated equal cross-neutralizing antibody levels against all SARS-CoV-2 variants tested. Conclusions: Our study demonstrates that although Omicron variants are able to enhance cross-neutralizing antibody levels in pre-immune individuals, primary infections with BA.1 or BA.2 induced mostly variant-specific neutralizing antibodies, emphasizing the differently shaped humoral immunity induced by the two Omicron variants. These data thus contribute substantially to the understanding of antibody responses induced by primary Omicron infections or multiple exposures to different SARS-CoV-2 variants and are of particular importance for developing vaccination strategies in the light of future emerging variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Antibodies, Viral , Broadly Neutralizing Antibodies , Humans , Membrane Glycoproteins , Neutralization Tests , RNA, Messenger , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins
10.
Microbiol Spectr ; 10(5): e0212922, 2022 Oct 26.
Article in English | MEDLINE | ID: covidwho-2019796

ABSTRACT

The SARS-CoV-2 Omicron variant is characterized by substantial changes in the antigenic structure of the Spike (S) protein. Therefore, antibodies induced by primary Omicron infection lack neutralizing activity against earlier variants. In this study, we analyzed whether these antigenic changes impact the sensitivity of commercial anti-SARS-CoV-2 antibody assays. Sera from 37 unvaccinated, convalescent individuals after putative primary Omicron infection were tested with a panel of 20 commercial anti-SARS-CoV-2 immunoassays. As controls, we used samples from 43 individuals after primary infection with the SARS-CoV-2 ancestral wild-type strain. In addition, variant-specific live-virus neutralization assays were used as a reference for the presence of SARS-CoV-2-specific antibodies in the samples. Notably, in Omicron convalescents, there was a statistically significant reduction in the sensitivity of all antibody assays containing S or its receptor-binding-domain (RBD) as antigens. Furthermore, antibody levels quantified by these assays displayed a weaker correlation with Omicron-specific neutralizing antibody titers than with those against the wild type. In contrast, the sensitivity of nucleocapsid-protein-specific immunoassays was similar in wild-type and Omicron-infected subjects. In summary, the antigenic changes in the Omicron S lead to reduced immunoreactivity in the current commercial S- and RBD-specific antibody assays, impairing their diagnostic performance. IMPORTANCE This study demonstrates that the antigenic changes of the SARS-CoV-2 Omicron variant affect test results from commercial Spike- and RBD-specific antibody assays, significantly diminishing their sensitivities and diagnostic abilities to assess neutralizing antibodies.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Neutralization Tests , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/metabolism , SARS-CoV-2 , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , COVID-19/diagnosis , Antibodies, Viral , Antibodies, Neutralizing
11.
Genet Med ; 24(7): 1449-1458, 2022 07.
Article in English | MEDLINE | ID: covidwho-1991046

ABSTRACT

PURPOSE: Host genetic variants in activating natural killer (NK) cell receptors may contribute to differences in severity of COVID-19. NK cell-mediated antibody-mediated cellular cytotoxicity (ADCC) responses play, however, a controversial role in SARS-CoV-2 infections. It is unclear whether proinflammatory and cytotoxic SARS-CoV-2-specific ADCC responses limit disease severity or rather contribute to the immunopathogenesis of severe COVID-19. METHODS: Using a genetic association approach and subsequent in vitro antibody-dependent NK cell activation experiments, we investigated whether genetic variants in the FcγRIIIa-encoding FCGR3A gene, resulting in expression of either a low-affinity or high-affinity variant, and individual SARS-CoV-2-specific ADCC response contribute to COVID-19 severity. RESULTS: In our study, we showed that the high-affinity variant of the FcγRIIIa receptor, 158-V/V, is significantly over-represented in hospitalized and deceased patients with COVID-19, whereas the low-affinity FcγRIIIa-158-F/F variant occurs more frequently in patients with mild COVID-19 (P < .0001). Furthermore, functional SARS-CoV-2 antibody-specific NK cell-mediated ADCC assays revealed that significantly higher proinflammatory ADCC responses occur in hospitalized patients with COVID-19, and are especially observed in NK cells expressing the FcγRIIIa-158-V/V variant (P < .0001). CONCLUSION: Our study provides evidence that pronounced SARS-CoV-2-specific NK cell-mediated ADCC responses are influenced by NK cell FcγRIIIa genetic variants and are a hallmark of severe COVID-19.


Subject(s)
Antineoplastic Agents , COVID-19 , Antibody-Dependent Cell Cytotoxicity/genetics , COVID-19/genetics , Humans , Killer Cells, Natural/metabolism , SARS-CoV-2/genetics
12.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1970687

ABSTRACT

Background and Methods The SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) Omicron (B.1.1.529) variant is the antigenically most distinct variant to date. As the heavily mutated spike protein enables neutralization escape, we studied serum-neutralizing activities of naïve and vaccinated individuals after Omicron BA.1 or BA.2 sub-lineage infections in live virus neutralization tests with Omicron BA.1, Omicron BA.2, wildtype (WT, B1.1), and Delta (B.1.617.2) strains. Serum samples obtained after WT infections and three-dose mRNA vaccinations with and without prior infection were included as controls. Results Primary BA.1 infections yielded reduced neutralizing antibody levels against WT, Delta, and Omicron BA.2, while samples from BA.2-infected individuals showed almost no cross-neutralization against the other variants. Serum neutralization of Omicron BA.1 and BA.2 variants was detectable after three-dose mRNA vaccinations, but with reduced titers. Vaccination-breakthrough infections with either Omicron BA.1 or BA.2, however, generated equal cross-neutralizing antibody levels against all SARS-CoV-2 variants tested. Conclusions Our study demonstrates that although Omicron variants are able to enhance cross-neutralizing antibody levels in pre-immune individuals, primary infections with BA.1 or BA.2 induced mostly variant-specific neutralizing antibodies, emphasizing the differently shaped humoral immunity induced by the two Omicron variants. These data thus contribute substantially to the understanding of antibody responses induced by primary Omicron infections or multiple exposures to different SARS-CoV-2 variants and are of particular importance for developing vaccination strategies in the light of future emerging variants.

13.
Front Immunol ; 13: 888794, 2022.
Article in English | MEDLINE | ID: covidwho-1896684

ABSTRACT

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) with different resistance levels to existing immunity have recently emerged. Antibodies that recognize the SARS-CoV-2 spike (S) protein and exhibit neutralizing activities are considered the best correlate of protection and an understanding of humoral immunity is crucial for controlling the pandemic. We thus analyzed such antibodies in individuals recovered from infection in 2020 as well as vaccinees after two doses of an mRNA vaccine. Methods: Neutralizing antibody responses against three SARS-CoV-2 variants (D614G, VOCs Beta and Delta) were determined in serum samples from 54 infected individuals (24 non-hospitalized, 30 hospitalized) and 34 vaccinees shortly after symptom onset or second vaccination, respectively, as well as six months later. In addition, the effect of the S sequence of the infecting strain on neutralization was studied. Results: Non-hospitalized patients had the lowest neutralization titers against all variants, while those of hospitalized patients equaled or exceeded those of vaccinees. Neutralizing activity was lower against the two VOCs and declined significantly in all cohorts after six months. This decrease was more pronounced in hospitalized and vaccinated individuals than in non-hospitalized patients. Of note, the specific neutralizing activity (NT titer/ELISA value ratio) was higher in the infected cohorts than in vaccinees and did not differ between non-hospitalized and hospitalized patients. Patients infected with viral strains carrying mutations in the N-terminal domain of the spike protein were impaired in Beta VOC neutralization. Conclusions: Specific neutralizing activities were higher in infected than in vaccinated individuals, and no difference in the quality of these antibodies was observed between hospitalized and non-hospitalized patients, despite significantly lower titers in the latter group. Additionally, antibody responses of infected individuals showed greater heterogeneity than those of vaccinees, which was associated with mutations in the spike protein of the infecting strain. Overall, our findings yielded novel insights into SARS-CoV-2-specific neutralizing antibodies, evolving differently after virus infection and COVID-19 vaccination, which is an important issue to consider in ongoing vaccine strategy improvements.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Membrane Glycoproteins , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines, Synthetic , Viral Envelope Proteins , mRNA Vaccines
14.
Clin Chem Lab Med ; 60(8): 1308-1312, 2022 07 26.
Article in English | MEDLINE | ID: covidwho-1862295

ABSTRACT

OBJECTIVES: Results of earlier external quality assessment (EQA) rounds suggested remarkable differences in the sensitivity of SARS-CoV PCR assays. Although the test systems are intended to detect SARS-CoV-2 in individual samples, screening is often applied to sample pools to increase efficiency and decrease costs. However, it is unknown to what extent these tests actually meet the manufacturer's specifications for sensitivity and how they perform when testing sample pools. METHODS: The sensitivity of assays in routine use was evaluated with a panel of positive samples in a round of a SARS-CoV-2 virus genome detection EQA scheme. The panel consisted of samples at or near the lower limit of detection ("weakly positive"). Laboratories that routinely test sample pools were asked to also analyze the pooled EQA samples according to their usual pool size and dilution method. RESULTS: All participants could detect a highly positive patient-derived sample (>106 copies/mL). Most (96%) of the test systems could detect at least 1,000 copies/mL, meeting the minimum acceptable benchmark, and many (94%) detected the vRNA in a sample with lower concentration (500 copies/mL). The false negative ratio increased to 16 and 26% for samples with 100 and 50 copies/mL, respectively. CONCLUSIONS: The performance of most assays met or exceeded their specification on sensitivity. If assays are to be used to analyze sample pools, the sensitivity of the assay and the number of pooled samples must be balanced.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , Humans , SARS-CoV-2/genetics , Sensitivity and Specificity
15.
Clin Chem Lab Med ; 60(2): 291-298, 2022 01 27.
Article in English | MEDLINE | ID: covidwho-1505705

ABSTRACT

OBJECTIVES: Mutation-specific PCR assays have quickly found their way into laboratory diagnostics due to their capacity to be a fast, easy to implement and high-throughput method for the detection of known SARS-CoV-2 variants of concern (VoCs). However, little is known about the performance of such assays in routine laboratory analysis. METHODS: The results reported in a recent round of an external quality assessment (EQA) scheme for SARS-CoV-2 mutation-specific PCR were retrospectively analyzed. For the determination of individual variant-specific sequences as well as for the interpretation results for certain virus variants, correct, incorrect, and unreported results were evaluated, and their possible causes were investigated. RESULTS: A total of 34 laboratories participated in this study. For five samples containing the VoC Alpha + E484K, Beta, Gamma, Delta, or B.1.1.318 (as a variant of interest), 848 results for SARS-2-CoV mutation detection were reported, 824 (97.2%, range per sample 88-100%) of which were correct. Melting curve assays gave 99% correct results, real-time RT-qPCR 94%, microarray-based assays 100%, and MALDI-TOF MS 96%. A total of 122/167 (73%) reported results for SARS-CoV-2 variant determination were correct. Of the 45 inconclusive or incorrect results, 33 (73%) were due to inadequate selection of targets that did not allow identification of contemporary VoC, 11 (24%) were due to incorrect results, and one (3%) was due to correct results of mutation-specific PCR. CONCLUSIONS: Careful and up-to-date selection of the targets used in mutation-specific PCR is essential for successful detection of current SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2/genetics , COVID-19/virology , Humans , Mutation , Real-Time Polymerase Chain Reaction , Retrospective Studies
17.
J Clin Virol ; 141: 104905, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1385867

ABSTRACT

BACKGROUND: Distinctive genotypes of SARS-CoV-2 have emerged that are or may be associated with increased transmission, pathogenicity, and/or antibody escape. In many countries, clinical and diagnostic laboratories are under mandate to identify and report these so-called variants of concern (VOC). OBJECTIVES: We used an external quality assessment scheme to determine the scope, accuracy, and reliability of laboratories using various molecular diagnostic assays to identify current VOC (03 March 2021). STUDY DESIGN: Participant laboratories were sent the same five patient-derived samples and were asked to provide their variant detection methods, variant detection results and interpretation of results. RESULTS: Twenty-five laboratories reported a range of RT-qPCR-based assays to identify specific variations in the SARS-CoV-2 spike protein that are characteristic of three VOC lineages. Laboratories that detected VOC-associated nucleotide mutations at four specific sites had the highest ratio of correct classification. Low template copy number and additional variation in target regions resulted in loss of confidence and accuracy in sample classification. CONCLUSIONS: Melting-curve-based assays to identify genomic variants are less time-consuming and require less bioinformatic analysis compared to partial or whole genome sequencing. However, our results suggest that correct classification of a given genotype/lineage (e.g., a VOC) relies on the ability to detect more than one variant site, adequate template in the sample (i.e., relatively high viral load/copy number) and results may be unclear in certain samples with additional genetic variations. These initial results suggest that some diagnostic laboratories may require additional training to interpret and report complex genetic information about a dynamic emerging virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Quality Control , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Spike Glycoprotein, Coronavirus
18.
Allergy ; 77(1): 230-242, 2022 01.
Article in English | MEDLINE | ID: covidwho-1373783

ABSTRACT

BACKGROUND: The determinants of successful humoral immune response to the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are of critical importance for the design of effective vaccines and the evaluation of the degree of protective immunity conferred by exposure to the virus. As novel variants emerge, understanding their likelihood of suppression by population antibody repertoires has become increasingly important. METHODS: In this study, we analyzed the SARS-CoV-2 polyclonal antibody response in a large population of clinically well-characterized patients after mild and severe COVID-19 using a panel of microarrayed structurally folded and unfolded SARS-CoV-2 proteins, as well as sequential peptides, spanning the surface spike protein (S) and the receptor-binding domain (RBD) of the virus. RESULTS: S- and RBD-specific antibody responses were dominated by immunoglobulin G (IgG), mainly IgG1 , and directed against structurally folded S and RBD and three distinct peptide epitopes in S2. The virus neutralization activity of patients´ sera was highly correlated with IgG antibodies specific for conformational but not sequential RBD epitopes and their ability to prevent RBD binding to its human receptor angiotensin-converting enzyme 2 (ACE2). Twenty percent of patients selectively lacked RBD-specific IgG. Only immunization with folded, but not with unfolded RBD, induced antibodies against conformational epitopes with high virus-neutralizing activity. Conformational RBD epitopes required for protection do not seem to be altered in the currently emerging virus variants. CONCLUSION: These results are fundamental for estimating the protective activity of antibody responses after natural infection or vaccination and for the design of vaccines, which can induce high levels of SARS-CoV-2-neutralizing antibodies conferring sterilizing immunity.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Epitopes , Humans , Spike Glycoprotein, Coronavirus/genetics
19.
Clin Chem Lab Med ; 59(10): 1735-1744, 2021 09 27.
Article in English | MEDLINE | ID: covidwho-1286880

ABSTRACT

OBJECTIVES: External quality assessment (EQA) schemes provide information on individual and general analytical performance of participating laboratories and test systems. The aim of this study was to investigate the use and performance of SARS-CoV-2 virus genome detection systems in Austrian laboratories and their preparedness to face challenges associated with the pandemic. METHODS: Seven samples were selected to evaluate performance and estimate variability of reported results. Notably, a dilution series was included in the panel as a measure of reproducibility and sensitivity. Several performance criteria were evaluated for individual participants as well as in the cohort of all participants. RESULTS: A total of 109 laboratories participated and used 134 platforms, including 67 different combinations of extraction and PCR platforms and corresponding reagents. There were no false positives and 10 (1.2%) false negative results, including nine in the weakly positive sample (Ct ∼35.9, ∼640 copies/mL). Twenty (22%) laboratories reported results of mutation detection. Twenty-five (19%) test systems included amplification of human RNA as evidence of proper sampling. The overall linearity of Ct values from individual test systems for the dilution series was good, but inter-assay variability was high. Both operator-related and systematic failures appear to have caused incorrect results. CONCLUSIONS: Beyond providing certification for participating laboratories, EQA provides the opportunity for participants to evaluate their performance against others so that they may improve operating procedures and test systems. Well-selected EQA samples offer additional inferences to be made about assay sensitivity and reproducibility, which have practical applications.


Subject(s)
COVID-19/diagnosis , Genome, Viral , Quality Assurance, Health Care , SARS-CoV-2/isolation & purification , Austria/epidemiology , COVID-19/virology , Humans , Laboratories , Molecular Diagnostic Techniques/methods , Pandemics , SARS-CoV-2/genetics , Sensitivity and Specificity
20.
Sci Rep ; 11(1): 10158, 2021 05 12.
Article in English | MEDLINE | ID: covidwho-1226443

ABSTRACT

We analyzed SARS-CoV-2 seroprevalence in a large, well-described representative Viennese cohort after an early governmental lockdown with respect to the occurrence of symptoms and household transmission. Participants of the LEAD Study, a population-based cohort study from Vienna, Austria, were invited along with their household members (April 20th to May20th 2020). Sera were analyzed using anti-SARS-CoV-2 immunoassay including a neutralization test as a confirmatory assay. A total of 12,419 individuals participated (5984 LEAD participants; 6435 household members), 163 (1.31%; 59 LEAD cohort members) of whom were SARS-CoV-2 antibody positive. The estimated number of COVID-19 cases projected from our findings by age and sex for Vienna was 21,504 (1.13%). Cumulative number of positively tested cases in Vienna until May 20th 2020 was 3020, hence 7.1 times (95% confidence interval 5.5-9.1) lower than projected. Relative risk (RR) of seropositivity by age was highest for children aged 6-9 years [RR compared to age group 20-49: 1.21 (CI 0.37-4.01)], lowest for ≥ 65 years [RR 0.47 (CI 0.21-1.03)]. Half of the positive individuals developed no or mild symptoms. In a multivariate analysis, taste and smell disturbances were most strongly related to SARS-CoV-2 positivity. Infection probability within households with one confirmed SARS-CoV-2-specific antibody-positive person was 31%. Although seroprevalence was very low (1.13%) for a central European capital city, due to an early governmental lockdown, SARS-CoV-2 infections were more prevalent than officially reported polymerase chain reaction-positive cases. Of note, seroprevalence was highest in young children. Half of SARS-CoV-2 antibody-positive subjects had no or only mild symptoms. Taste and smell disturbances were most prominent, possibly guiding clinicians in diagnosing SARS-CoV-2 infection.


Subject(s)
COVID-19/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Austria/epidemiology , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Serological Testing , Child , Communicable Disease Control , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2/isolation & purification , Seroepidemiologic Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL